Extensions 1→N→G→Q→1 with N=C23 and Q=D12

Direct product G=NxQ with N=C23 and Q=D12
dρLabelID
C23xD1296C2^3xD12192,1512

Semidirect products G=N:Q with N=C23 and Q=D12
extensionφ:Q→Aut NdρLabelID
C23:D12 = C23:D12φ: D12/C3D4 ⊆ Aut C23248+C2^3:D12192,300
C23:2D12 = C2xC4:S4φ: D12/C4S3 ⊆ Aut C2324C2^3:2D12192,1470
C23:3D12 = C23:3D12φ: D12/C6C22 ⊆ Aut C2396C2^3:3D12192,519
C23:4D12 = C23:4D12φ: D12/C6C22 ⊆ Aut C2348C2^3:4D12192,1052
C23:5D12 = C2xC12:7D4φ: D12/C12C2 ⊆ Aut C2396C2^3:5D12192,1349
C23:6D12 = C2xD6:D4φ: D12/D6C2 ⊆ Aut C2348C2^3:6D12192,1046

Non-split extensions G=N.Q with N=C23 and Q=D12
extensionφ:Q→Aut NdρLabelID
C23.1D12 = C23.D12φ: D12/C3D4 ⊆ Aut C23488-C2^3.1D12192,32
C23.2D12 = C23.2D12φ: D12/C3D4 ⊆ Aut C23248+C2^3.2D12192,33
C23.3D12 = C23.3D12φ: D12/C3D4 ⊆ Aut C23248+C2^3.3D12192,34
C23.4D12 = C23.4D12φ: D12/C3D4 ⊆ Aut C23488-C2^3.4D12192,35
C23.5D12 = C23.5D12φ: D12/C3D4 ⊆ Aut C23488-C2^3.5D12192,301
C23.6D12 = M4(2):D6φ: D12/C3D4 ⊆ Aut C23488-C2^3.6D12192,305
C23.7D12 = D12:1D4φ: D12/C3D4 ⊆ Aut C23248+C2^3.7D12192,306
C23.8D12 = A4:Q16φ: D12/C4S3 ⊆ Aut C23486-C2^3.8D12192,957
C23.9D12 = C8:2S4φ: D12/C4S3 ⊆ Aut C23246C2^3.9D12192,960
C23.10D12 = A4:D8φ: D12/C4S3 ⊆ Aut C23246+C2^3.10D12192,961
C23.11D12 = C24.4D6φ: D12/C4S3 ⊆ Aut C2348C2^3.11D12192,971
C23.12D12 = C24.5D6φ: D12/C4S3 ⊆ Aut C2324C2^3.12D12192,972
C23.13D12 = C24.12D6φ: D12/C6C22 ⊆ Aut C2348C2^3.13D12192,85
C23.14D12 = C12.20C42φ: D12/C6C22 ⊆ Aut C23484C2^3.14D12192,116
C23.15D12 = C23.15D12φ: D12/C6C22 ⊆ Aut C2396C2^3.15D12192,282
C23.16D12 = D12.32D4φ: D12/C6C22 ⊆ Aut C2396C2^3.16D12192,292
C23.17D12 = D12:14D4φ: D12/C6C22 ⊆ Aut C2396C2^3.17D12192,293
C23.18D12 = C23.18D12φ: D12/C6C22 ⊆ Aut C2396C2^3.18D12192,296
C23.19D12 = C24.21D6φ: D12/C6C22 ⊆ Aut C2396C2^3.19D12192,512
C23.20D12 = C2xC23.6D6φ: D12/C6C22 ⊆ Aut C2348C2^3.20D12192,513
C23.21D12 = C24.27D6φ: D12/C6C22 ⊆ Aut C2396C2^3.21D12192,520
C23.22D12 = C24:2D4φ: D12/C6C22 ⊆ Aut C2396C2^3.22D12192,693
C23.23D12 = C24:3D4φ: D12/C6C22 ⊆ Aut C2396C2^3.23D12192,694
C23.24D12 = C24.4D4φ: D12/C6C22 ⊆ Aut C2396C2^3.24D12192,696
C23.25D12 = M4(2):24D6φ: D12/C6C22 ⊆ Aut C23484C2^3.25D12192,698
C23.26D12 = C24.9C23φ: D12/C6C22 ⊆ Aut C23484C2^3.26D12192,1307
C23.27D12 = C23.27D12φ: D12/C12C2 ⊆ Aut C2396C2^3.27D12192,665
C23.28D12 = C23.28D12φ: D12/C12C2 ⊆ Aut C2396C2^3.28D12192,672
C23.29D12 = C24:30D4φ: D12/C12C2 ⊆ Aut C2396C2^3.29D12192,673
C23.30D12 = C24:29D4φ: D12/C12C2 ⊆ Aut C2396C2^3.30D12192,674
C23.31D12 = C24.82D4φ: D12/C12C2 ⊆ Aut C2396C2^3.31D12192,675
C23.32D12 = C24.75D6φ: D12/C12C2 ⊆ Aut C2396C2^3.32D12192,771
C23.33D12 = C24.76D6φ: D12/C12C2 ⊆ Aut C2396C2^3.33D12192,772
C23.34D12 = C2xC4oD24φ: D12/C12C2 ⊆ Aut C2396C2^3.34D12192,1300
C23.35D12 = C23.35D12φ: D12/D6C2 ⊆ Aut C2348C2^3.35D12192,26
C23.36D12 = C22.2D24φ: D12/D6C2 ⊆ Aut C2348C2^3.36D12192,29
C23.37D12 = C24.13D6φ: D12/D6C2 ⊆ Aut C2348C2^3.37D12192,86
C23.38D12 = C12.3C42φ: D12/D6C2 ⊆ Aut C2348C2^3.38D12192,114
C23.39D12 = C23.39D12φ: D12/D6C2 ⊆ Aut C2396C2^3.39D12192,280
C23.40D12 = C23.40D12φ: D12/D6C2 ⊆ Aut C2396C2^3.40D12192,281
C23.41D12 = D12.31D4φ: D12/D6C2 ⊆ Aut C2348C2^3.41D12192,290
C23.42D12 = D12:13D4φ: D12/D6C2 ⊆ Aut C2348C2^3.42D12192,291
C23.43D12 = C23.43D12φ: D12/D6C2 ⊆ Aut C2396C2^3.43D12192,294
C23.44D12 = C22.D24φ: D12/D6C2 ⊆ Aut C2396C2^3.44D12192,295
C23.45D12 = Dic6:14D4φ: D12/D6C2 ⊆ Aut C2396C2^3.45D12192,297
C23.46D12 = Dic6.32D4φ: D12/D6C2 ⊆ Aut C2396C2^3.46D12192,298
C23.47D12 = C24.56D6φ: D12/D6C2 ⊆ Aut C2396C2^3.47D12192,502
C23.48D12 = C24.58D6φ: D12/D6C2 ⊆ Aut C2396C2^3.48D12192,509
C23.49D12 = C24.59D6φ: D12/D6C2 ⊆ Aut C2348C2^3.49D12192,514
C23.50D12 = C24.60D6φ: D12/D6C2 ⊆ Aut C2396C2^3.50D12192,517
C23.51D12 = C23.51D12φ: D12/D6C2 ⊆ Aut C2396C2^3.51D12192,679
C23.52D12 = C23.52D12φ: D12/D6C2 ⊆ Aut C2396C2^3.52D12192,680
C23.53D12 = C23.53D12φ: D12/D6C2 ⊆ Aut C2348C2^3.53D12192,690
C23.54D12 = C23.54D12φ: D12/D6C2 ⊆ Aut C2396C2^3.54D12192,692
C23.55D12 = C2xD12:C4φ: D12/D6C2 ⊆ Aut C2348C2^3.55D12192,697
C23.56D12 = C2xC23.21D6φ: D12/D6C2 ⊆ Aut C2396C2^3.56D12192,1051
C23.57D12 = C2xC8:D6φ: D12/D6C2 ⊆ Aut C2348C2^3.57D12192,1305
C23.58D12 = C2xC8.D6φ: D12/D6C2 ⊆ Aut C2396C2^3.58D12192,1306
C23.59D12 = C12.9C42central extension (φ=1)192C2^3.59D12192,110
C23.60D12 = C2xC2.Dic12central extension (φ=1)192C2^3.60D12192,662
C23.61D12 = C2xC8:Dic3central extension (φ=1)192C2^3.61D12192,663
C23.62D12 = C2xC24:1C4central extension (φ=1)192C2^3.62D12192,664
C23.63D12 = C2xC2.D24central extension (φ=1)96C2^3.63D12192,671
C23.64D12 = C2xC6.C42central extension (φ=1)192C2^3.64D12192,767
C23.65D12 = C22xC24:C2central extension (φ=1)96C2^3.65D12192,1298
C23.66D12 = C22xD24central extension (φ=1)96C2^3.66D12192,1299
C23.67D12 = C22xDic12central extension (φ=1)192C2^3.67D12192,1301
C23.68D12 = C22xC4:Dic3central extension (φ=1)192C2^3.68D12192,1344
C23.69D12 = C22xD6:C4central extension (φ=1)96C2^3.69D12192,1346

׿
x
:
Z
F
o
wr
Q
<